% 1 - ορισμός. Τι είναι το Радиоактивность атмосферы
Diclib.com
Διαδικτυακό λεξικό

Τι (ποιος) είναι Радиоактивность атмосферы - ορισμός

Протонная радиоактивность
  • Распад изомера <sup>53m</sup>Co: в 1,5 % случаев наблюдается эмиссия протона.
  • электронного захвата]] (ЕС). Те возбуждённые состояния, которые лежат ниже энергии отделения протона (''S<sub>p</sub>''), распадаются с излучением [[гамма-квант]]ов в основное состояние дочернего ядра В. Для более высоких состояний существует конкурирующий канал распада с эмиссией протона, называемый задержанным протонным распадом.

Радиоактивность атмосферы      

обусловлена присутствием в атмосфере радиоактивных газов и аэрозолей, попадающих в неё в результате процессов, происходящих в природе, и деятельности человека. Соответственно различают естественную и искусственную Р. а. Естественные радиоактивные газы являются изотопами радона: 222Rn - радон, 220Rn - торон, 219Rn - актинон, и образуются вследствие радиоактивного распада 238U, 232Th и 235U (см. Радиоактивные ряды). Они поступают в атмосферу с почвенным воздухом при обмене его с атмосферным (т. н. эксхаляция) или путём диффузии. При радиоактивном распаде изотопов Rn образуются аэрозольные продукты их распада (см. Радиоактивные аэрозоли), т.к. возникающие при этом химические элементы относятся к металлам и не летучи при обычных условиях (Po, Bi и др.). При этом 232Rn (период полураспада T1/2 = 3,8 сут) распространяется в пределах тропосферы, а его долгоживущие продукты распада 210Pb (RaD), 210Bi (RaE), 210Po (RaF) обнаружены в стратосфере. Содержание 222Rn в воздухе над океанами на 2 порядка ниже, чем над материками, а концентрация над земной поверхностью уменьшается примерно вдвое на каждый км высоты. Торон и актинон вследствие малого значения T1/2 (54 сек и 3,9 сек) присутствуют только у земной поверхности. Продукт распада торона 212Pb (ThB) с T1/2 =10,6 ч обнаруживается в нижней тропосфере. В воздухе над океанами 220Rn, 210Rn и их продукты распада практически отсутствуют.

Основная масса естественных радиоактивных изотопов 7Be, 10Be, 35S, 32P, 33P, 22Na, 14C, 3H), возникающих при взаимодействии космического излучения с ядрами атомов химических элементов, входящих в состав воздуха, образуется в стратосфере, где и отмечаются наибольшие их концентрации.

Искусственные радиоактивные аэрозоли образуются при ядерных взрывах. Через несколько десятков сек после взрыва они содержат Радиоактивность атмосферы 100 различных радиоактивных изотопов; наиболее токсичными из них считаются 90Sr, 137Cs, 14C, 131I. Высота заброса в атмосферу радиоактивных аэрозолей зависит от мощности и высоты ядерного взрыва, а характер их распространения - от размеров частиц и от высоты заброса их в атмосферу. Наиболее крупные частицы (сотни мкм и выше) быстро выпадают из атмосферы, распространяясь всего на сотни км от места взрыва (локальные выпадения). Однако в случае взрывов мощных ядерных бомб (эквивалентных десяткам мегатонн тринитротолуола) они попадают в стратосферу и, прежде чем выпадут на поверхность Земли, могут пройти в атмосфере тысячи км. Мелкие аэрозоли (размером не более нескольких мкм), попавшие при взрыве в верхнюю тропосферу, обычно распространяются вдоль зонального пояса широт с запада на восток, а заброшенные в стратосферу выпадают на поверхность Земли в пределах всего полушария, а в некоторых случаях - в обоих полушариях, поэтому выпадения этих аэрозолей называются глобальными.

Основной механизм очищения атмосферы от радиоактивных аэрозолей - выпадение осадков (см. Радиоактивность осадков). Среднее время τ пребывания радиоактивного аэрозоля в нижней тропосфере (до момента его выпадения на земную поверхность) порядка нескольких сут, а в верхней тропосфере 20-40 сут. Радиоактивные аэрозоли, попавшие в нижние слои стратосферы, имеют τ порядка года и выше. Величина τ растет с увеличением высоты заброса в стратосферу. Обычно бо́льшая часть радиоактивных продуктов деления остаётся в пределах того полушария, где проведён взрыв ядерной бомбы.

Концентрация продуктов деления в тропосфере растет с высотой. Особенно большой рост отмечается при переходе через тропопазу. В стратосфере максимум концентрации продуктов деления по измерениям до осени 1961 отмечался на высоте 19-23 км (примерно на той же высоте, что и слой максимальной концентрации нерадиоактивного аэрозоля). Радиоактивное загрязнение атмосферы от предприятий атомной промышленности имеет чаще всего локальный характер; однако 85Kr распределён по всей тропосфере.

Изучение распространения в атмосфере естественных радиоактивных аэрозолей, а также продуктов ядерных взрывов позволило получить некоторые характеристики физики атмосферы: скорость вымывания аэрозолей из атмосферы, оценку коэффициента макротурбулентной диффузии и скорости обмена между атмосферами полушарий, а также между стратосферой и тропосферой и т.д.

Лит.: Метеорология и атомная энергия, пер. с англ., под ред. Н. Л. Бызовой и К. П. Махонько, Л., 1971; Кароль И. Л., Радиоактивные изотопы и глобальный перенос в атмосфере, Л., 1972; Израэль Ю. А., Мирные ядерные взрывы и окружающая среда, Л., 1974.

С. Г. Малахов.

ЗАГРЯЗНЕНИЕ ВОЗДУХА         
  • Загрязнение воздуха тепловозом
ПРИНЕСЕНИЕ В АТМОСФЕРНЫЙ ВОЗДУХ НОВЫХ, НЕХАРАКТЕРНЫХ ДЛЯ НЕГО ФИЗИЧЕСКИХ, ХИМИЧЕСКИХ И БИОЛОГИЧЕСКИХ ВЕЩЕСТВ ИЛИ ИЗМЕНЕНИЕ ИХ ЕСТЕСТВЕНН
Загрязнение воздуха; Загрязнение атмосферы
любое нежелательное изменение состава земной атмосферы в результате поступления в нее различных газов, водяного пара и твердых частиц (под воздействием природных процессов или в результате деятельности человека).
Примерно 10% загрязнителей попадают в атмосферу вследствие таких природных процессов, как, например, вулканические извержения, которые сопровождаются выбросами в атмосферу пепла, распыленных кислот, в том числе серной, и множества ядовитых газов. Кроме того, основными источниками серы в атмосфере служат брызги морской воды и разлагающиеся растительные остатки. Также следует отметить лесные пожары, в результате которых образуются плотные клубы дыма, обволакивающие значительные площади, и пыльные бури. Деревья и кустарники выделяют много летучих органических соединений (ЛОС), образующих голубую дымку, которая закрывает бльшую часть гор Блу-Ридж в США (в переводе "голубой хребет"). Присутствующие в воздухе микроорганизмы (пыльца, плесневые грибы, бактерии, вирусы) вызывают у многих людей приступы аллергии и инфекционные заболевания.
Остальные 90% загрязнителей имеют антропогенное происхождение. Основными их источниками являются: сжигание ископаемого топлива на электростанциях (выбросы дыма) и в двигателях автомобилей; производственные процессы, не связанные с сжиганием топлива, но приводящие к запылению атмосферы, например вследствие эрозии почв, добычи угля открытым способом, взрывных работ и утечки ЛОС через клапаны, стыки труб на нефтеперегонных и химических заводах и из реакторов; хранение твердых отходов; а также разнообразные смешанные источники.
Загрязняющие вещества, попадая в атмосферу, переносятся на большие расстояния от источника, а затем возвращаются на земную поверхность в виде твердых частиц, капель или химических соединений, растворенных в атмосферных осадках.
Химические соединения, источник которых находится на уровне земли, быстро смешиваются с воздухом нижних слоев атмосферы (тропосферы). Они называются первичными загрязняющими веществами. Некоторые из них вступают в химические реакции с другими загрязнителями или с основными компонентами воздуха (кислородом, азотом и водяным паром), образуя вторичные загрязняющие вещества. В результате наблюдаются такие явления, как фотохимический смог, кислотные дожди и образование озона в приземном слое атмосферы. Источником энергии для этих реакций служит солнечная радиация. Вторичные загрязнители - содержащиеся в атмосфере фотохимические окислители и кислоты - представляют главную опасность для здоровья человека и глобальных изменений окружающей среды.
См. также:
Загрязнение атмосферы Земли         
  • Загрязнение воздуха тепловозом
ПРИНЕСЕНИЕ В АТМОСФЕРНЫЙ ВОЗДУХ НОВЫХ, НЕХАРАКТЕРНЫХ ДЛЯ НЕГО ФИЗИЧЕСКИХ, ХИМИЧЕСКИХ И БИОЛОГИЧЕСКИХ ВЕЩЕСТВ ИЛИ ИЗМЕНЕНИЕ ИХ ЕСТЕСТВЕНН
Загрязнение воздуха; Загрязнение атмосферы
Загрязнение атмосферы Земли или загрязнение воздуха — происходит, когда в атмосферу Земли попадают вредные или избыточные количества веществ, включая газы (такие как диоксид углерода, монооксид углерода, диоксид серы, оксиды азота, метан и хлорфторуглероды), частицы (как органические, так и неорганические) и биологические молекулы. Это может вызвать заболевания, аллергию и даже смерть людей, также это может нанести вред другим живым организмам, таким как животные и продовольственные культуры, может нанести ущерб и естественной или искусственной экос�

Βικιπαίδεια

Протонный распад

Прото́нный распа́д (протонная эмиссия, протонная радиоактивность) — один из видов радиоактивного распада, при котором атомное ядро испускает протон.

(A, Z) → (A − 1, Z − 1) + p.

Не следует путать протонный распад с распадом протона — гипотетическим процессом, не сохраняющим барионное число.

Протонный распад может происходить из высоких возбужденных состояний в ядре вслед за бета-распадом (в этом случае процесс называется бета-задержанным протонным распадом) или из основного состояния (или низколежащего изомерного состояния) очень богатых протонами ядер; в последнем случае процесс очень похож на альфа-распад. Протонный распад обычно конкурирует с типичными бета-распадными модами захвата протонноизбыточных ядер — электронным захватом и позитронным распадом.

Чтобы протон покинул ядро, энергия отделения протона должна быть отрицательной — в этом случае протон не связан и туннелирует из ядра сквозь кулоновский барьер за конечное время. Протонная эмиссия не наблюдается у нуклидов, существующих в природе; ядра, распадающиеся по этому каналу, могут быть получены путём ядерных реакций, как правило, с использованием ускорителя частиц.

Хотя мгновенная (то есть не бета-задержанная) протонная эмиссия наблюдалась из изомерного состояния кобальта-53 ещё в 1969 году, другие такие протон-излучающие состояния не были найдены до 1981 года, когда протонная радиоактивность основного состояния лютеция-151 и тулия-147 была обнаружена в экспериментах в Центре исследований тяжёлых ионов (GSI) в Западной Германии. После этого прорыва исследования в этой области стали быстро развиваться, и на сегодняшний день обнаружено более 25 изотопов, распадающихся из основного (или изомерного) состояния по этому каналу. Изучение протонного распада способствовало исследованию деформаций, массы и структуры ядер, Этот процесс является чистым примером квантового туннелирования (в отличие от альфа-распада, где вероятность распада несколько маскируется вероятностью образования альфа-кластера в ядре и другими побочными факторами).